
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 17, 11 15- 1133 (1993)

THE CALCULATION OF SEPARATED FLOWS USING
A DISTRIBUTED MEMORY MIMD COMPUTER

N. HARDY, B. A. MURRAY, M. J. DOWNIE A N D P. BETTESS
Department of Marine Technology, University of Newcastle upon Tyne. Queen Victoria Road,

Newcastle upon Tyne, NEI 7RU, U.K.

SUMMARY
A brief description of distributed memory MIMD computers, and in particular, a transputer based
computing surface, is presented. The factors to be considered in their application to computationally
intensive C F D problems are discussed with reference to the discrete vortex method used for the solution of
separated flow about bluff bodies. Three parallel algorithms for its implementation are presented, and the
results are discussed in the context of the speed-ups obtained using up to sixty-four parallel processors.

KEY WORDS Parallel processing MIMD Discrete vortices Distributed memory Separated flow

1. INTRODUCTION

Over the past decade, the processing power of computers has increased dramatically, but at the
same time, scientists and engineers are producing more data to be processed and larger problems
to be solved. The conventional approach to higher performance is to increase the speed of
sequential, or von Neumann, architectures. However, an ultimate limitation exists with the speed
at which electrical signals can be transmitted over physical connections between processor
components.

An alternative approach is to distribute data and algorithms over many processors and thus
achieve parallelism. Parallel architectures are usually classified according to Flynn's taxon-
omy'-Multiple Instruction Single Data (MISD), Single Instruction Multiple Data (SIMD), or
Multiple Instruction Multiple Data (MIMD).

Earlier parallel computers were SIMD machines, such as the ICL Distributed Arrary Proces-
sor (DAP), which simultaneously executes the same instruction on separate data items. An
example of a MISD architecture is a pipeline system, where processors execute different instruc-
tions on a single stream of data. A MIMD machine is characterized by independent processors
executing different programs using different data and communicating with each other. There is
now a wide range of MIMD machines which utilize different processors and communication
architectures. The field is too large to investigate here and the reader is referred to Reference 2 for
a comprehensive survey. A transputer based architecture is an example of a distributed memory
MIMD machine and is described in Section 3.

The advent of such revolutionary computer architectures has significant implications for the
solution of fluid flow problems. Whilst the Navier-Stokes equations provide a complete descrip-
tion of fluid flows of engineering interest, they can be solved analytically for a very limited range
of geometries and boundary conditions. However, considerable progress has been made, where

0271-2091/93/241115-19$14.50
0 1993 by John Wiley & Sons, Ltd.

Received October 1992
Revised August 1993

1116 N. HARDY E T A L

the equations can be simplified, and the solution to many problems in which it is permissible to
ignore viscous effects have been obtained. Solution of potential flow problems by grid methods,
such as that of Clarke et ~ l . , ~ or using boundary integral formulations, such as Hearn et al.," are
good examples of this. The parallelization of a boundary integral calculation is the subject of
another p~bl icat ion.~

The use of grid methods for the solution of problems where the viscous terms have to be
retained, for the separated flow about bluff bodies for example, have been less successful in
engineering applications. The discrete vortex method was originally developed in response to this
deficiency. Further progress has been made with finite difference and finite element models and
many models that have evolved from the original discrete vortex method now make use of grids.
The two approaches are now converging with the former extending their range of applicability,
and the latter including viscous diffusion effects.

The feature that all numerical models used for this class of flows have in common is that they
are highly computationally intensive. In the case of grid methods this arises from the requirement
of appropriately fine meshes required to capture the details of flows with extremely high-velocity
gradients. This compounds the problem of providing sufficient computer storage and processing
time to carry out the computation of time-dependent flows over a long enough period to be
meaningful. These problems can be ameliorated by MIMD computers, which are capable of
achieving large reductions in elapsed processing time through the employment of parallel
algorithms.

2. THE DISCRETE VORTEX MODEL

The flow about bluff bodies can be characterized by the Reynolds number and, if it is also
oscillatory as in wave flows, by the Keulegan-Carpenter number. The Reynolds number,
Re = DU?/v, is a measure of the relative importance of the inertial and the viscous effects in a flow
of typical velocity, 6 and kinematic viscosity, v, about a body of typical dimension, D. At low
Reynolds numbers viscous effects, such as the diffusion of vorticity generated at the fluidlbody
interface, are more important. At high Reynolds numbers boundary layers are thin and are
important chiefly as generators of vorticity which is transported through a flow in which
high-velocity gradients are common and in which convection dominates. Also, as the Reynolds
number increases the presence of turbulence in the flow becomes increasingly significant, event-
ually precipitating transition to turbulence in the boundary layers and inducing a drag crisis. The
application of turbulence models appropriate to unsteady separated flows is, as yet, far from
being common place. Throughout the higher Reynolds number range, except through the drag
crisis, the vorticity is largely confined to concentrated subregions of an otherwise irrotational
flow, the energy spectrum of the whole being narrow banded.

In a unidirectional flow the concentrated regions of vorticity arise from the roll up of the
separated shear layers resulting in the formation of the familiar von Karman vortex street. In
oscillatory flow the situation is more complicated. The Keulegan-Carpenter number, which
characterizes such flows, is defined as 6T/D, where 6 is now the velocity amplitude of the
undisturbed flow at the point occupied by the body. It is a measure of the magnitude of a typical
fluid particle orbit in the undisturbed flow in relation to the scale of the body over the period, T. If
the Keulegan-Carpenter number is very small (less than 3) separation barely occurs and there is
no discernable vortex shedding. If it is large, a number of vortices are shed over each half cycle of
the flow, and if it is large enough, the flow over each half cycle should resemble that behind
a cylinder in a steady unidirectional stream. At intermediate Keulegan-Carpenter numbers
a range of flow regimes occur, each associated with its own distinctive vortex shedding pattern.6*

CALCULATION OF SEPARATED FLOWS 1117

The discrete vortex method was developed for modelling high Reynolds number separated flow
during the late sixties. Early proponents of the method applied to circular cylinders include
Gerrard' and Sarpkaya' and to sharp edged bodies, Clements" (for a review of more recent
developments, see Reference 11).

In the basic discrete vortex method, the Reynolds number is assumed to be sufficiently high for
viscosity to play little part except in the initial generation of vorticity at the surface of the body.
The vorticity is represented by point singularities in an otherwise irrotational flow. In other
words, the right-hand side of the vorticity convection equation,

a@ - 4- u * vo = v v2 0,
at

is set to zero. The left-hand side is modelled by a Lagrangian approach in which the vorticity,
defined as o = V x u, where u is the velocity, is convected with the fluid particles. Under these
conditions the vorticity of each particle remains unchanged with time. Computation of the flow
around a circular cylinder of radius a, follows a gridless time-stepping procedure.

The complex potential is defined in terms of a velocity potential, 4, and a stream function, $;

W= C$J +i$. (2)

At each time step this is given by

where In is the natural logarithm. The first term represents the unseparated irrotational flow of
a uniform stream about a circular cylinder. The second term represents an array of N , discrete
vortices with position vectors, C j , and strengths or circulations, rj, modelling the vorticity in the
flow. The third term, in which the over bar represents the complex conjugate, is made up of the
vortex images in the cylinder required to maintain the normal boundary condition, dC$J/an=O, on
the surface of the body, where n indicates the normal.

The discrete vortices are introduced into the flow at each time step, so as to satisfy appropriate
boundary conditions at the cylinder surface, The velocity of each discrete vortex is calculated
using the Biot-Savart law and the complex potential

and the position of each vortex is advanced during a small time interval, At, by a suitable time
integration scheme, say,

(j (t + A t) = [j (t) +--1 At.
at

(5)

The complex force can be calculated at each time step using the generalized Blasius theorem

where p is the fluid density.
For a steady-unidirectional flow, this may be simplified as

1118 N. HARDY ET AL.

using the complex potential (3). For an oscillatory flow the U term in equation (3) becomes time
dependent and there is an additional inertia term present in the force equation due to the
acceleration of the flow.

Repetition of the procedure yields a time history of the flow and the corresponding forces
experienced by the cylinder. The most computationally intensive part of the algorithm is the
calculation of the velocity of each vortex in the flow at every time step. As can be deduced from
equations (3) and (4), this involves O(N t) calculations. The velocity of any given vortex is the sum
of the contributions made by the ambient flow and by every other vortex in the flow. It should be
noted that the contributions can all be computed independently, a feature that can be exploited
by parallel algorithms.

Various sequential strategies have evolved to reduce the time taken to compute flows requiring
large numbers of discrete vortices. An example is high Keulegan-Carpenter oscillatory flows in
which a large number of time-steps is taken before the flow settles down to a representative
shedding pattern. In the model used for the present studies, the well-known procedure of
distributing circulation, r, of the discrete vortices onto the nodes of a grid using bilinear
interpolation is adopted. The contributions from a vortex to the surrounding nodes can be
expressed as a relevant ratio multiplied by the vortex circulation. When this is generalized over
a distributed vortex flow field the nodal circulations are found by the equation

where the vortices u are contained in an element with z j , k as one of its nodes, q signifies the
relevant node number, A J u) represents the subelement areas and A T (u) the total element area
(see Figure 1). The velocity field is calculated at the nodes and the vortex velocities are found by
a reverse interpolation procedure. This approach requires only O(N , log, N ,) computations,
where N , is the number of active nodes, and many thousands of discrete vortices can be handled.

Another feature of the present model is that equation (1) is solved in its entirety using operator
splitting, in which the vorticity equation is divided into a convective and a diffusive part. On each
time step the convective part is solved in the manner just described and the diffusive part is
represented by the equation

aw
- = v v20.
at

This is modelled stochastically and solved by a random walk approach, as used by Chorin12 and
Lewis and Porthouse,' in which each discrete vortex is given a two-dimensional displacement
using two independent sets of Gaussian random numbers of zero mean and standard deviation,
J(4v AtlRe). The inclusion of viscous diffusion in the model means that it may be applied over an
intermediate Reynolds number range, where it may be more reasonable to ignore the effects of
turbulence. However, it does increase the amount of computation at each time step, a factor that
becomes more important still if the diffusion step is solved by a finite difference s ~ h e m e . ' ~ " ~

The following sections describe how the elapsed time of separated flow calculations can be
reduced by implementing parallel algorithms on a distributed memory MIMD computer, in this
case comprising an array of transputers.

3. PARALLEL HARDWARE AND SOFTWARE

A transputer is a microcomputer with its own local memory and with links for connecting one
transputer to another.I6 The concept was developed by the company INMOS. One such
transputer, from the INMOS transputer family, is the IMS T800 which incorporates a 64-bit

CALCULATION OF SEPARATED FLOWS 1119

floating point unit which can sustain 1.5 Million Floating Point Operations Per Second
(MFLOPS)." The Central Processing Unit (CPU) is of a 32-bit architecture. The local memory
consists of 4 Kbytes of on-chip RAM with an 80 Mbytes s-' data transfer rate. A memory
interface provides an external memory bandwidth of 26.6 Mbytes s-'. Four serial communica-
tion links can transfer data from one transputer to another at a rate of 10/20 Mbits s-'. Full
specifications of the IMS T800 are given in the T800 product overview'* (Figure 2).

Since the introduction of the transputer in 1985, many transputer based machines and plug-in
boards for PCs have become commercially available. These support a plethora of operating
systems, toolsets and programming languages. Operating systems for transputers fall into two
categories-those designed specifically for the transputer, e.g. the Transputer Development
System (TDS) and Helios, and proprietary systems which have been extended with extra facilities
or toolsets, e.g. UNIX. Programming languages also fall into these categories. The most popular
language designed for the transputer is Occam which allows an application to be described as

1120

3 32 b i t External)lemory Bus

N. HARDY ET AL.

r I

I FLOATING POINT UNIT I

Fig. 2:

a collection of processes which operate concurrently and communicate through channels.
Contemporary languages such as C, Fortran 77 and Pascal have been adapted and extended in
various ways to allow sequential processes to communicate.

The transputer system used for the implementation of the discrete vortex method is a Meiko
in-sun computing surface consisting of 16 T800 transputers, each with 4 Mbytes of external
memory. The programming language is Meiko’s Fortran 77 in conjunction with Meiko’s
Communicating Sequential Tools (CSTools). CSTools’ is a program development toolset
running, in this case, under UNIX, and consisting of cross-development tools and run-time
facilities. Meiko’s Fortran can call CSTools’ library routines, enabling processes to communicate.
CSTools provides a level of abstraction from details of the hardware, enabling the programmer to
view the system as fully connected. CSTools will handle the transmission of data across the
network or processors. The sending of an integer from one process to another can be achieved by
the following example syntax:

INTEGER THISPROC, NEXTPROC, C
CALL CSN OPEN (CSN NULL ID, THISPROC)
CALL CSN REG NAME (THISPROC, ‘Procl’)
CALL CSN LOOKUP NAME (NEXTPROC, ‘ProcT, .TRUE.)
CALL CSN TX (THISPROC, 0, NEXTPROC, C, 4)

CALCULATION OF SEPARATED FLOWS 1121

In this case, the destination processor need not be directly connected to the sending processor.
CSTools will route the data to its destination.

Various sized domains of the Edinburgh Concurrent Supercomputer (ECS) 2o have been
available to the authors for collecting results.

The T800 transputer is by no means the most powerful processor available for constructing
distributed memory MIMD computers. The purpose of its use here is to investigate the optimum
implementation of a problem on a similar architecture, although results may vary depending on
the ratio between processing speed and data communication rates. One such processor which will
be of interest in the implementation of computationally intensive problems is the INMOS T9000.
Although not commerically available at the time of writing, technical specifications are avail-
able.2's22 The T9000 has a peak performance of 25 MFLOPS or 200 MIPS with link speeds of
80 Mbytes s - I .

4. PARALLEL IMPLEMENTATION

In order to find an optimum method of parallelizing the discrete vortex method, it is necessary to
analyse the performance of a serial version. The method can be broadly decomposed into ten
steps. Definition of the grid is carried out once, whereas the subsequent steps are carried out for
each time interval, except for output of data and reordering of vortices which is undertaken less
often. The percentage of elapsed time taken by each step of a run of 500 time intervals for
a uniform flow at Reynolds number lo4 is shown in Table I, where the overall elapsed time is
33 613 s.

It is clear that, calculation of nodal and surface velocities account for the high proportion of
85.9% of the total elapsed time. Based on this analysis, a first parallelization scheme shares the
work involved in the two steps amongst available processors, while the remaining steps execute
serially on one, the root, processor. This technique is often referred to as processor farming and is
discussed by Hockney and Je~shope?~ PritchardZ4 and Q ~ i n n . ' ~ The master process carries out
all initialization, including the definition of the grid. Work pertaining to calculation of the surface
velocities is shared out to the worker processes and resultant velocities received. New vortices are
introduced to satisfy boundary conditions and circulations distributed to the nodes. These data
are then allocated to the worker processes which calculate and return nodal velocities. The master
process then distributes nodal velocities to the vortices, calculates forces and implements vortex
displacements.

Table I. Breakdown of elapsed execution time

Step

1
2
3
4
5
6
7
8
9

10

Function

Definition of polar grid
Calculation of surface velocities
Reordering vortices
Introduction of vortices
Output of results
Distribution of vortex circulations
Calculation of nodal velocities
Distribution of velocities
Calculation of forces
Displacement of vortices

Elapsed time (%)

0.00
9.64
0.21
0.02
2.70
0.83

76.26
1.61
1.21
6.56

1122 N. HARDY ET AL.

The portioning of work to worker processes is carried out in one of two ways. The first method
uses a prescheduled partitioning scheme where the work to be done by each worker process has
been decided at compilation time. Given n non-zero nodal velocities to be calculated by
p processes, then the number assigned to process i is given by

n + i - 1 n(i)=int (7), (7)

which has the effect of balancing the Ioad on each processor. Figure 12 (see the appendix) outlines
the master and worker process algorithms when using this approach.

A second method uses a self-scheduled partitioning mechanism whereby the work done by each
worker process is not defined until run time. Each worker process is initially given one node to
evaluate, after which the calculated velocity is returned to the master process, indicating that the
worker process is idle and ready to receive another node. The master process receives calculated
velocities from the worker processes as they become free and sends data for the next node to be
evaluated to the sending worker process. The procedure continues until all nodal velocities have
been calculated. This scheme approaches the problem of minimising worker process idle time
rather than load balancing. Figure 13 (see the appendix) outlines the algorithm for portioning
computation to worker processes. Concepts of pre- and self-scheduled partitioning algorithms are
discussed by Dayz6 and Quinn.''

A second parallelization scheme not only distributes the surface and nodal velocity calculations
but also shares the work involved in distributing data to and from nodes (Steps 6 and 8),
calculating force coefficients (Step 9), implementing vortex displacements (Step 10) and reordering
of vortex data (Step 3). The algorithm requires the distribution of vortex data among worker
processes, necessitating larger volumes of data communication between the master and worker
processes. However, this disadvantage is offset by the fact that a higher percentage (approx-
imately 96.38%) of the program is carried out in parallel. The master process still undertakes
the initialization and definition of the grid and introduces new vortices. However, once the
vortices are created, they are distributed among the worker processes. If the number of vortices
introduced is u (where u is the number of segments defining the polar grid), the number of worker
processes is p and the time-step count is t , then the number of vortices sent to process i is given by

u(i)=int[u+f (1) - 1 1,
where

f(i)=mod(i+t-2, p) + 1.

The purpose of the function f is to balance the load for each process. If omitted, then after
t time steps, some worker processes may be processing t more vortices than others. After the
distribution of the vortices, each worker process distributes the circulations of its vortices to
neighbouring nodes. The nodal circulations are then sent to the master process which accumu-
lates them and distributes them back to the worker processes. Each worker process, i, evaluates
n (i) nodal velocities, where n") is given by equation (7), and sends results to the master process.
The master process collates the nodal velocities and sends all non-zero velocities to the worker
processes. Each worker process then distributes nodal velocities to its stored vortices, calculates
partial forces and sends them to the master process for accumulation. Each worker process
displaces it vortices and the process is repeated for the next time step. After initial introduction
and distribution of vortices, the only processing of vortex data undertaken by the master process

CALCULATION OF SEPARATED FLOWS 1123

.. .- .-.
-*I

10 Seconds I

....a

20 Seconds I

30 Seconds

40 Seconds-

Figure 3. Flow visualization

is that required during output of data. Figure 13 (see the appendix) outlines the master and
worker process algorithms for nodal/vottex parallelization.

5. RESULTS

Elapsed execution times for computation of a uniform flow at Reynolds number lo4 about
a circular cylinder have been recorded for 500 time steps of interval 0.1 s. The flow visualization
produced by the discrete vortex model is shown in Figure 3 with associated non-dimensional
drag (in-line with the direction of flow) and lift (transverse with respect to the flow) forces shown
in Figure 4. The results on the 16-transputer Meiko computing surface for the three paral.le1iz-
ation schemes are shown in Figures 5-7. The results for the same flow computed on upto 64
transputers using an ECS domain are shown in Figures 8-10.

The figures show the speed-up obtained by running the program with different numbers of
worker processes. Speed-up is defined as the ratio between the time taken for one transputer to

1124

1.5

1.0

0.5

Force
Coefficients 0 . 0

-O.!

-1.1

-1.!

Speed-up

N. HARDY ET AL.

Drq Force Coefficients
(average - 1.0SOSO)

Lift Force Coefficients
(r s - 0.54828)

-

Flow Sped * Time / Dlmneter

Figure 4. Drag and lift forces

-+--
- 4 -

- D - .

Total
(No output)

Nodal Vels.

Surface Vels.

Vortices

Ideal Speed-up

No. Worker Processes

Figure 5. Speed-up on 16-transputer computing surface using prescheduled nodal parallelization

CALCULATION OF SEPARATED FLOWS 1125

Speed-up

Total
(No output)

- - - Nodal Vels,

- - Surface Vels.

- E- Vortices

--*-.

Ideal Speed-up -

Figure 6. Speed-up on 16-transputer computing surface using selfscheduled nodal parallelization

Speed-up

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

- 4 -

- * -
- 0 -

Total
(No output)

Nodal Vels.

Surface Vels.

Vortices

Ideal Speed-up

No. Worker Processes

Figure 7. Speed-up on 16-transputer computing surface using nodal and vortex parallelization

1126 N. HARDY ET AL.

o a 16 24 32 40 48 56 64
No. Worker Processes

Figure 8. Speed-up on 64-transputer ECS domain using prescheduled nodal parallelization

Speed-up

Total
(No output)

- - Nodal Vels.

- - Surface Vels.

- p- Vortices

--*..

Ideal Speed-up -

No. Worker Processes

Figure 9. Speed-up on 64-transputer ECS domain using selfscheduled nodal parallelization

CALCULATION OF SEPARATED FLOWS 1127

Total
(No output)

Nodal Vels.

Surface Vels.

Vortices

Ideal Speed-up

Speed-up

No. Worker Processes

Figure 10. Speed-up on 64-transputer ECS domain using nodal and vortex parallelization

run the serial discrete vortex program, T,, and the time taken for p transputers to run the parallel
program using p worker processes, Tp,

(9)
TS
TP

This definition of speed-up is given by a number of authors, including Kerry and Martin” and
Quinn.” CSTools’ default transputer link configuration has been used for all test cases since the
default allows all available links to be connected and as the program requires communication
between the master and all worker processes, but not between worker processes, this configura-
tion achieves the best results. The configuration essentially defines a ternary tree with links that
would not normally be connected used to increase the system software’s choice of data packet
routing between processors. The configuration of an 8-transputer domain is shown in Figure 11.

Results shown in Figures 5-10 have been subdivided to show the speed-up obtained from
parallelization of nodal velocity calculations (Step 7), surface velocity calculations (Step 2), and
processing of vortices (Steps 3, 6, 8-10). The overall performance of the parallel program
excluding output (Step 5) is also shown. Output of the vortex data has been excluded from the
timings since the operation is dependent on devices external to the transputer network and
therefore tends to vary with the load on such devices.

The pre- and selfscheduled nodal parallelization schemes achieve similar results. The pre-
scheduled method performs marginally better with a speed-up of 5.88 on 16 processors and
a peak of 7.21 on 48 processors. The self-scheduled scheme achieves a speed-up of 5.69 on 16
processors and peaks at 6.69 on 24 processors. Note that the performance of the self-scheduled
scheme degrades faster than the pre-scheduled as the number of processors increases. Nodal
velocity calculations attain a speed-up of 3959 on 64 processors using the pre-scheduled
algorithm compared to only 17.21 using the self-scheduled algorithm, indicating a high level of
idle time. This is mainly due to the difference in grain size of the two algorithms, where grain size,

s =-.

1128 N. HARDY ET AL.

L

Figure 1 I . Eight transputer Meiko default configuration

as defined by Almasi and Gottlieb," is the average subtask size measured in instructions
executed. The grain size of the self-scheduled algorithm is always the work involved in the
processing of one node, whereas the granularity of the pre-scheduled algorithm for processor i is
that associated with n(') nodes as defined by equation (7). After 500 time steps the number of
active nodes is 560 and so the grain size is eight or nine times larger on 64 processors than that of
the selfscheduled algorithm.

The advantage of this scheme is the simplicity of its implementation. The most computationally
intensive parts of the serial program have been identified and parallelized. The code required to
distribute work for the parallelization is small and the majority of the code remains unchanged
and is executed as part of the master process. However, when only a proportion of the program is
parallelized, then the effect of the serial portion becomes more prominent as the number of
processors increases and the overall speed-up of the system is asymptotically limited by the serial
portion. This limitation is known as Amdahl's Law.29 By dividing the time to run the parallel
program, T,, into the serial portion, t,, and parallel portion, t,, then the speed-up is given as

T5 S,=-
t s + t ,

and the maximum speed-up is

(1 1)
T5 S , = - .
t s

Thus, for the nodal parallelization schemes, where 85.9% of the serial execution time is parallel-
ized, a maximum theoretical speed-up of only 7.09 can be achieved, or 8.54 if output is excluded.
As detailed earlier, the pre-scheduled scheme achieves a maximum speed-up of 7-21 when
excluding output, which is approaching the theoretical maximum, indicating that the parallel
portions are executing efficiently. A second disadvantage of this scheme lies with the memory
requirements of the master process. Since much of the code is serial, then this code and associated
data must reside on the root processor. Processing of all vortex data is carried out by the master

CALCULATION OF SEPARATED FLOWS 1129

process and as such, all vortex data arrays must be held in the root processor’s memory. This has
the effect of limiting the number of stored vortices to approximately 28 000 given 4 Mbytes of
external memory. In terms of time steps, the number is limited to around 1250.

The nodal/vortex parallelization scheme achieves better overall results with a speed-up of 12.2
on 16 transputers and a maximum speed-up of 13-64 on 24 transputers. Although the perfor-
mance of the surface and nodal velocity stages are degraded in comparison to the previous
parallelization schemes due to the increased volume of data communication and synchronization
necessary, the speed-up of processing vortices compensates well. Furthermore, as the flow
progresses, the number of vortices increases linearly, whereas the number of active nodes tends to
level out after 200 time-steps. Thus, the processing of vortex data becomes more suited to
parallelization as the flow progresses.

This scheme is much more complex to implement than the previous algorithms since each stage
of the process is dependent on the previous stage and so there is a need for high volumes of data
communication between stages. However, the effort involved is rewarded by its results. Since
96.38% of the serial execution time is now parallelized, the potential maximum speed-up (see
equation 11) is 27.62 (and 105.26 if output is excluded), although this is not achieved due to a poor
communication/computation ratio and also to the number of synchronization points within each
time-step. Furthermore, as the vortex data are distributed among worker processes, the limit on
the number of stored vortices is increased as the number of processors increases. Given 4 Mbytes
of external memory shared by one master and one worker process, space can be allocated for
approximately 12 000 vortices. On a 16-transputer system, approximately 192 000 distributed
vortices may be stored, allowing up to approximately 8700 time steps to be processed. On
a 64-transputer domain, figures are increased to 768 000 vortices and 35 000 time steps.

A refined nodal and vortex parallelization scheme could maximize overall speed-up by
examining the peak speed-up of the nodal velocities, surface velocities and vortex processing
stages. By executing each of these subdivisions on 32,24 and 16 processors a potential speed-up
on 32 processors of 14.28 is achievable. However, the scheme is difficult to implement since the
peak speed-ups will differ depending on the type of flow and for how long it is modelled.

6. CONCLUSIONS

The aim of this study was to examine the feasibility of implementing an existing discrete vortex
model on a distributed memory MIMD machine, in this case a transputer system. The advant-
ages of using parallel hardware are obvious. As has been demonstrated, when there is a large
amount of computation to be carried out then it can be accomplished on parallel processors in
a fraction of the time necessary for conventional processors of a similar MIP or MFLOP rating.
However, when data dependency between units of work is high, adding processors to the system
will not necessarily increase its speed. Thus, given an optimal parallelization scheme, the financial
cost of a parallel system and the effort involved in modifying the existing software must be
balanced against the resulting increase in speed. Bearing in mind the foregoing, the physical
limitations of single processors, and the continuing demand for the solution of ever larger
problems, distributed parallel processing may well be judged the best approach to achieving the
required results within practical time constraints.

Within its limitations, the discrete vortex method is very powerful for treating an important
range of practical flow problems. It has been shown that it is an excellent candidate method for
parallel computation, perhaps to a greater extent than most competing CFD methods. The
advent of parallel hardware is likely to lead to a much wider usage of the method applied to flows
which, for all practical purposes, are inaccessible to treatment by conventional computer
hardware.

1130 N . HARDY E T A L .

ACKNOWLEDGEMENTS

This report is part of a research project funded by the Science and Engineering Research Council
and the Marine Technology Directorate, grant number GR/F/07903. We are grateful to Professor
J. M. R. Graham of the Department of Aeronautics, Imperial College of Science, Technology and
Medicine, for useful discussions.

APPENDIX

Input user
defined data
I n i ti a 1 i se var i abl es

i a l i s e l inks t o
I n i t i a l i s e l i n k t o
master process

frm master process

,' I F SURFACE
Calculate

(B E G + IPROC - l)/NPROC
surface ve loci t ies

Calculate
(NACTIVE + IPROC - l)/NPROl

'*. nodal ve loci t ies

master process

V O R K E R

M A S T E R

NSEG=Number of segments defining grid
NACTlVE=Number of nodes with non-zero circulation
IPROC= Worker process number
NPROC = Number of worker processes

Figure 12. Flow diagram for prescheduled nodal parallelization

CALCULATION O F SEPARATED FLOWS

UPTO = MIN(N,NPROC)

t o worker processes

1131

\\

.x Receive nodal '.
circulat ions

M A S T E R

NPROC = Number of worker processes
N=Number of nodes for which velocities are to be calculated

Figure 13. Flow diagram for selfscheduled nodal parallelization

If COUNT <= N-UPTO
Assign node INODE
to i d l e worker process

\ I

nodal velocity ,':
I \ I \

I \

',
COUNT = COUNT + 1

Send nodal velocity
t o master process

1132 N. HARDY E T A L .

V O R K E R

OUTPUT is boolean and true if at a time-step designated for output
S =(NSEG + IPROC - l)/NPROC
N =(NACTIVE+IPROC- I)/NPROC
NSEG =Number of segments defining grid
NACTIVE= Number of nodes with non-zero circulation
IPROC = Worker process number
NPROC = Number of worker processes

Figure 14. Flow diagram for nodal/vortex parallelization

REFERENCES

I . M. F. Flynn, ‘Some computer organisations and their effectiveness’, IEEE Trans. Comput., C-21, 948-960. (1972).
2. A. Trew and G. Wilson (eds), Past, Present, Parallel: A Survey ofAuailable Parallel Computer Systems, Springer, Berlin,

3. P. J. Clarke, P. Bettess, G. E. Hearn and M. J. Downie, ‘The application of the finite element analysis to the solution of
1991.

Stokes wave diffraction problems’, Int. j . numer. methods Juids, 12, 343-367 (1991).

CALCULATION OF SEPARATED FLOWS 1133

4. G. E. Hearn, ‘Tank wall influences, higher order boundary elements, irregular frequencies and seakeeping for design’,

5. N. Hardy, P. Bettess and M. J. Downie, ‘Wave diffraction problems solved with a distributed memory MIMD

6. P. W. Bearman, ‘Vortex trajectories in oscillatory flow’, Proc. Sep. Flow around Mar. Str., Trondheim, 1985, pp.

7. C. H. K. Williamson, ‘Sinusoidal flow relative to circular cylinders’, J . Fluid Mech., 155, 141-174 (1985).
8. J. H. Gerrard, ‘Numerical computation of the magnitude and frequency of lift on a circular cylinder’, Phil. Trans.

9. T. Sarpkaya, ‘Analytical study of separated flow about circular cylinders’, Trans. ASME, J . Bas. Eng., 90, 51 1-520

Discussion of ITTC Seakeeping Committee Report, ITTC Proc., Vol. 11, 1990.

computer’, (to be published).

133-153.

Royal Soc., 261, 137 (1967).

(1968).
10. R. R. Clements, ‘An inviscid model of two-dimensional vortex shedding’, J . Fluid Mech., 57(2), 321-336 (1973).
11. T. Sarpkaya, ‘Computational methods with vortices-the 1988 Freeman lecture’, J. Fluid Mech., 111, 5-52 (1989).
12. A. J. Chorin, ‘Numerical study of slightly viscous flow’, J. Fluid Mech., 57(4), 785-796 (1972).
13. R. I. Lewis and D. T. C. Porthouse, ‘Recent advances in the theoretical simulation of real fluid flows’, North East

14. J. M. R. Graham, ‘Computation of viscous separated flow using a particle method’, Proc. Con6 Numer. Meth.for Fluid

15. B. A. Murray, ‘Hydrodynamic loading due to appurtenances on jacket structures’, Ph.D. Thesis, Dept. Marine

16. INMOS, ‘Transputer development system’, Inmos Ltd., 1988.
17. D. May, ‘The transputer’, in G. Harp (ed.), Transputer Applications, Pitman, London, 1989.
18. INMOS, ‘Product overview: IMS T800 transputer’, INMOS, 1986.
19. Meiko, ‘CSTOOLS for SunOS’, Meiko Ltd., 1990.
20. N. MacDonald, M. Smith and N. Stroud, ‘Introduction to the Edinburgh concurrent supercomputer’, Edinburgh

21. R. Rinn, ‘Hl-The next generation’, Parsytec News, 1991.
22. ‘The Inmos H1 Becomes the Inmos T9000-A Better Balanced Microprocessor’, SERC/DTI Transputer Initiative

23. R. W. Hockney and C. R. Jesshope, ‘Parallel computing 2 architecture, programming and algorithms’, IOP

24. D. J. Pritchard, ‘Transputer applications on supernode’, in L. Freeman and C. Phillips (eds), Applications of

25. M. J. Quinn, Designing EfJicient Algorithms for Parallel Computers, McGraw-Hill, New York, 1987.
26. A. M. Day, ‘Parallel implementation of 3D convex-hull algorithm’, Comput. Aided Des., 23(3), 177-188 (1991).
27. N. Kerry and S. Martin, ‘Adapting an oil reservoir simulation package for a transputer array’, in L. Freeman and

28. G. S. Almasi and A. Gottlieb, ‘Highly Parallel Computing, The Benjamin/Cummings Menlo Park, CA, 1989.
29. G. Amdahl, ‘The validity of the single processor approach to achieving large scale computing capabilities’, AFIPS

Institute of Engineers and Shipbuilders, March 1983.

Mechanics, Oxford, 1988 pp 31C317.

Technology, University of Newcastle upon Tyne, 1992.

Parallel Computing Centre, 1991.

Mailshot, May 1991, pp. 17-23.

Publishing Ltd, 1988.

Transputers I, 10s Press, Amsterdam 1990, pp. 48-56.

C. Phillips (eds), Applications of Transputers 1, 1 0 s Press, Amsterdam 1990, pp. 215-222.

ConJ Proc. Spring Joint Comput. Con$ 30, 1967, pp. 483-485.

